Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
Prog2
/
stat
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
28fad0c3
authored
Aug 09, 2024
by
Karsa Zoltán István
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Summary plots py
parent
182c9eb4
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
311 additions
and
0 deletions
+311
-0
summary_plots.py
+311
-0
No files found.
summary_plots.py
0 → 100644
View file @
28fad0c3
import
matplotlib.pyplot
as
plt
import
json
import
numpy
as
np
import
pandas
as
pd
from
datetime
import
datetime
from
sklearn.metrics
import
mean_squared_error
import
statistics
from
scipy.stats
import
norm
import
scipy.stats
as
stats
def
read_moodle_json
(
file_path
,
key_list
):
try
:
with
open
(
file_path
,
'r'
)
as
file
:
data
=
json
.
load
(
file
)[
0
]
responses
=
{
}
for
item
in
data
:
neptun
=
item
[
"idnumber"
]
responses
[
neptun
]
=
{
}
for
q
in
key_list
:
responses
[
neptun
][
q
]
=
item
[
q
]
return
responses
except
FileNotFoundError
:
print
(
f
"Error: The file {file_path} was not found."
)
except
json
.
JSONDecodeError
:
print
(
f
"Error: The file {file_path} contains invalid JSON."
)
ZH1_A_responses
=
read_moodle_json
(
"BMEVIIIAA03_HU-1.NZHAcsoport-responses.json"
,
[
"response12"
,
"response13"
,
"response14"
,
"response15"
,
"response16"
])
ZH1_A_grades
=
read_moodle_json
(
"BMEVIIIAA03_HU-1.NZHAcsoport-grades.json"
,
[
"grade4000"
,
"q12300"
,
"q13500"
,
"q14400"
,
"q15300"
,
"q16200"
])
teachers
=
[
"Zoltán István Karsa"
,
"..."
]
graders
=
{
}
def
rename_key
(
old_key
,
extra_key
,
except_keys
=
[
"name"
,
"username"
,
"idnumber"
,
"emailaddress"
]):
if
old_key
in
except_keys
:
return
old_key
return
extra_key
+
old_key
def
rename_dict
(
dict
,
extra_key
):
new
=
{
}
for
i
in
dict
.
keys
():
key
=
rename_key
(
i
,
extra_key
)
new
[
key
]
=
dict
[
i
]
return
new
def
read_json_to_pandas
(
file_path
,
assigment
=
""
):
try
:
with
open
(
file_path
,
'r'
)
as
file
:
data
=
json
.
load
(
file
)[
0
]
filtered
=
[
d
for
d
in
data
if
d
[
'source'
]
==
"mod/quiz"
and
d
[
"name"
]
not
in
teachers
and
d
[
"revisedgrade"
]
!=
""
]
sorted_data
=
sorted
(
filtered
,
key
=
lambda
x
:
datetime
.
strptime
(
x
[
"dateandtime"
],
"
%
A,
%
d
%
B
%
Y,
%
I:
%
M
%
p"
),
reverse
=
False
)
filt_duplicate
=
{
}
for
i
in
sorted_data
:
if
i
[
"username"
]
not
in
filt_duplicate
:
i
[
"dateandtime"
]
=
datetime
.
strptime
(
i
[
"dateandtime"
],
"
%
A,
%
d
%
B
%
Y,
%
I:
%
M
%
p"
)
i
[
"originalgrade"
]
=
float
(
i
[
"revisedgrade"
])
i
[
"revisedgrade"
]
=
float
(
i
[
"revisedgrade"
])
i
[
"grader"
]
=
"student"
filt_duplicate
[
i
[
"username"
]]
=
rename_dict
(
i
,
assigment
)
else
:
filt_duplicate
[
i
[
"username"
]][
rename_key
(
"revisedgrade"
,
assigment
)]
=
float
(
i
[
"revisedgrade"
])
filt_duplicate
[
i
[
"username"
]][
rename_key
(
"overridden"
,
assigment
)]
=
"Yes"
filt_duplicate
[
i
[
"username"
]][
rename_key
(
"grader"
,
assigment
)]
=
i
[
"grader"
]
if
i
[
"grader"
]
not
in
graders
:
graders
[
i
[
"grader"
]]
=
1
else
:
graders
[
i
[
"grader"
]]
=
graders
[
i
[
"grader"
]]
+
1
dataframe
=
pd
.
DataFrame
(
filt_duplicate
.
values
())
dataframe
=
dataframe
.
set_index
(
"username"
)
dataframe
[
rename_key
(
"diff"
,
assigment
)]
=
abs
(
dataframe
[
rename_key
(
"revisedgrade"
,
assigment
)]
-
dataframe
[
rename_key
(
"originalgrade"
,
assigment
)])
return
dataframe
except
FileNotFoundError
:
print
(
f
"Error: The file {file_path} was not found."
)
except
json
.
JSONDecodeError
:
print
(
f
"Error: The file {file_path} contains invalid JSON."
)
df
=
pd
.
concat
([
read_json_to_pandas
(
"2024ZH1A.json"
,
"ZH1-"
),
read_json_to_pandas
(
"2024ZH1B.json"
,
"ZH1-"
)])
df2
=
pd
.
concat
([
read_json_to_pandas
(
"2024ZH2A.json"
,
"ZH2-"
),
read_json_to_pandas
(
"2024ZH2B.json"
,
"ZH2-"
)])
df3
=
pd
.
concat
([
read_json_to_pandas
(
"2024PZH1.json"
,
"PZH1-"
)])
df4
=
pd
.
concat
([
read_json_to_pandas
(
"2024PZH2.json"
,
"PZH2-"
)])
df
=
pd
.
concat
([
df
,
df2
,
df3
,
df4
],
axis
=
1
)
#df.to_excel("output.xlsx")
ZH1_over_notnull
=
df
[(
df
[
rename_key
(
"overridden"
,
"ZH1-"
)]
==
"Yes"
)
&
df
[[
rename_key
(
"originalgrade"
,
"ZH1-"
),
rename_key
(
"revisedgrade"
,
"ZH1-"
)]]
.
notnull
()
.
all
(
1
)]
ZH2_over_notnull
=
df
[(
df
[
rename_key
(
"overridden"
,
"ZH2-"
)]
==
"Yes"
)
&
df
[[
rename_key
(
"originalgrade"
,
"ZH2-"
),
rename_key
(
"revisedgrade"
,
"ZH2-"
)]]
.
notnull
()
.
all
(
1
)]
ZH1_notnull
=
df
[
df
[[
rename_key
(
"originalgrade"
,
"ZH1-"
),
rename_key
(
"revisedgrade"
,
"ZH1-"
)]]
.
notnull
()
.
all
(
1
)]
ZH2_notnull
=
df
[
df
[[
rename_key
(
"originalgrade"
,
"ZH2-"
),
rename_key
(
"revisedgrade"
,
"ZH2-"
)]]
.
notnull
()
.
all
(
1
)]
ZH_notnull
=
df
[
df
[[
rename_key
(
"originalgrade"
,
"ZH1-"
),
rename_key
(
"revisedgrade"
,
"ZH1-"
),
rename_key
(
"originalgrade"
,
"ZH2-"
),
rename_key
(
"revisedgrade"
,
"ZH2-"
)]]
.
notnull
()
.
all
(
1
)]
Z
,
xedges
,
yedges
=
np
.
histogram2d
(
ZH_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
ZH_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)],
bins
=
40
,
range
=
[[
0
,
40
],[
0
,
40
]])
Z2
,
xedges
,
yedges
=
np
.
histogram2d
(
ZH_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)],
ZH_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)],
bins
=
40
,
range
=
[[
0
,
40
],[
0
,
40
]])
im
=
plt
.
pcolormesh
(
xedges
,
yedges
,
Z2
-
Z
,
shading
=
'flat'
,
#cmap = plt.colormaps['Greys']
)
plt
.
colorbar
(
im
)
plt
.
axline
((
0
,
40
),
slope
=-
1
,
c
=
"black"
,
linestyle
=
'dashed'
,
label
=
"Min. Req"
)
plt
.
xlabel
(
"ZH1 grade"
)
plt
.
ylabel
(
"ZH2 grade"
)
#plt.legend()
plt
.
show
()
mu
,
std
=
norm
.
fit
(
ZH1_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)])
mean_revised_zh1
=
statistics
.
mean
(
ZH1_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)])
sd_revised_zh1
=
statistics
.
stdev
(
ZH1_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)])
x_axis
=
np
.
arange
(
0
,
40
,
0.01
)
plt
.
hist
([
df
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
df
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)],
#df[rename_key("originalgrade", "ZH2-")], df[rename_key("revisedgrade", "ZH2-")]
],
label
=
[
"Original grade ZH1"
,
"Revised grade ZH1"
,
# "Original grade ZH2", "Revised grade ZH2"
],
color
=
[
"red"
,
"blue"
,
#"blue", "cornflowerblue"
],
bins
=
20
,
)
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
)
*
len
(
df
[
rename_key
(
"originalgrade"
,
"ZH1-"
)]),
label
=
"Original N"
,
color
=
"red"
)
mu
,
std
=
norm
.
fit
(
ZH1_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
)
*
len
(
df
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)]),
label
=
"Revised N"
,
color
=
"blue"
)
plt
.
xlabel
(
'Point'
)
plt
.
ylabel
(
'Frequency'
)
plt
.
legend
()
plt
.
show
()
counts
,
bins
,
bars
=
plt
.
hist
([
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)],
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)],
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)]],
label
=
[
"Original grade ZH1"
,
"Revised grade ZH1"
,
"Original grade ZH2"
,
"Revised grade ZH2"
],
color
=
[
"red"
,
"lightcoral"
,
"blue"
,
"cornflowerblue"
],
bins
=
10
,
#density=True
)
count
=
len
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)])
mu
,
std
=
norm
.
fit
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
)
*
count
,
label
=
"Original ZH1 N"
,
color
=
"red"
)
density
=
[
sum
(
counts
[
0
][
0
:
3
])]
density
.
extend
(
counts
[
0
][
3
:])
density
=
np
.
array
(
density
)
print
(
density
)
limits
=
[
16
,
20
,
24
,
28
,
32
,
36
,
40
]
expected
=
norm
.
cdf
(
limits
,
mu
,
std
)
*
float
(
count
)
propability
=
[
expected
[
0
]]
propability
.
extend
(
expected
[
1
:]
-
expected
[
0
:
-
1
])
propability
.
append
(
count
-
expected
[
-
1
])
print
(
propability
)
test_stat
,
p_value
=
stats
.
chisquare
(
density
,
propability
)
# chi square test statistic and p value
print
(
'chi_square_test_statistic is : '
+
str
(
test_stat
))
print
(
'p_value : '
+
str
(
p_value
))
print
(
stats
.
chi2
.
ppf
(
1
-
0.05
,
df
=
14
))
mu
,
std
=
norm
.
fit
(
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
)
*
count
,
label
=
"Revised ZH1 N"
,
color
=
"lightcoral"
)
mu
,
std
=
norm
.
fit
(
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
),
label
=
"Original ZH2 N"
,
color
=
"blue"
)
mu
,
std
=
norm
.
fit
(
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
),
label
=
"Revised ZH2 N"
,
color
=
"cornflowerblue"
)
plt
.
xlabel
(
'Point'
)
plt
.
ylabel
(
'Density'
)
plt
.
legend
()
plt
.
show
()
counts
,
bins
,
bars
=
plt
.
hist
([
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)],
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)],
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)]],
label
=
[
"Original grade ZH1"
,
"Revised grade ZH1"
,
"Original grade ZH2"
,
"Revised grade ZH2"
],
color
=
[
"red"
,
"lightcoral"
,
"blue"
,
"cornflowerblue"
],
bins
=
20
,
#density=True
)
count
=
len
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)])
mu
,
std
=
norm
.
fit
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
)
*
count
,
label
=
"Original ZH1 N"
,
color
=
"red"
)
density
=
[
sum
(
counts
[
0
][
0
:
6
])]
density
.
extend
(
counts
[
0
][
6
:])
density
=
np
.
array
(
density
)
limits
=
[
14
,
16
,
18
,
20
,
22
,
24
,
26
,
28
,
30
,
32
,
34
,
36
,
38
,
40
]
expected
=
norm
.
cdf
(
limits
,
mu
,
std
)
*
float
(
count
)
propability
=
[
expected
[
0
]]
propability
.
extend
(
expected
[
1
:]
-
expected
[
0
:
-
1
])
propability
.
append
(
count
-
expected
[
-
1
])
test_stat
,
p_value
=
stats
.
chisquare
(
density
,
propability
)
# chi square test statistic and p value
print
(
'chi_square_test_statistic is : '
+
str
(
test_stat
))
print
(
'p_value : '
+
str
(
p_value
))
print
(
stats
.
chi2
.
ppf
(
1
-
0.05
,
df
=
14
))
mu
,
std
=
norm
.
fit
(
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
)
*
count
,
label
=
"Revised ZH1 N"
,
color
=
"lightcoral"
)
mu
,
std
=
norm
.
fit
(
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
),
label
=
"Original ZH2 N"
,
color
=
"blue"
)
mu
,
std
=
norm
.
fit
(
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)])
plt
.
plot
(
x_axis
,
norm
.
pdf
(
x_axis
,
mu
,
std
),
label
=
"Revised ZH2 N"
,
color
=
"cornflowerblue"
)
plt
.
xlabel
(
'Point'
)
plt
.
ylabel
(
'Density'
)
plt
.
legend
()
plt
.
show
()
coef
=
np
.
polyfit
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)],
1
)
lin
=
np
.
poly1d
(
coef
)
minmax
=
[
0
,
40
]
#[ZH1_over_notnull[rename_key("originalgrade", "ZH1-")].min(), ZH1_over_notnull[rename_key("originalgrade", "ZH1-")].max()]
plt
.
plot
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)],
'+'
,
label
=
"ZH1"
,
color
=
"red"
)
plt
.
plot
(
minmax
,
lin
(
minmax
),
':'
,
color
=
"lightcoral"
,
label
=
"ZH1 lin"
)
coef
=
np
.
polyfit
(
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)],
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)],
1
)
lin
=
np
.
poly1d
(
coef
)
minmax
=
[
0
,
40
]
#[ZH2_over_notnull[rename_key("originalgrade", "ZH2-")].min(), ZH2_over_notnull[rename_key("originalgrade", "ZH2-")].max()]
plt
.
plot
(
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)],
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)],
'*'
,
label
=
"ZH2"
,
color
=
"blue"
)
plt
.
plot
(
minmax
,
lin
(
minmax
),
'--'
,
label
=
"ZH2 lin"
,
color
=
"cornflowerblue"
)
plt
.
axline
((
0
,
0
),
slope
=
1
,
c
=
"black"
,
label
=
"y=x"
)
plt
.
xlabel
(
"Original grade"
)
plt
.
ylabel
(
"Revised grade"
)
plt
.
legend
()
plt
.
savefig
(
"revised_lin.svg"
,
format
=
'svg'
,
dpi
=
300
)
plt
.
show
()
MSE_ZH1
=
np
.
sqrt
(
mean_squared_error
(
ZH1_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH1-"
)],
ZH1_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH1-"
)]))
print
(
MSE_ZH1
)
MSE_ZH2
=
np
.
sqrt
(
mean_squared_error
(
ZH2_over_notnull
[
rename_key
(
"originalgrade"
,
"ZH2-"
)],
ZH2_over_notnull
[
rename_key
(
"revisedgrade"
,
"ZH2-"
)]))
print
(
MSE_ZH2
)
plt
.
boxplot
([
ZH1_over_notnull
[
"ZH1-originalgrade"
],
ZH1_over_notnull
[
"ZH1-revisedgrade"
],
ZH2_over_notnull
[
"ZH2-originalgrade"
],
ZH2_over_notnull
[
"ZH2-revisedgrade"
]],
labels
=
[
"Original ZH1"
,
"Revised ZH1"
,
"Original ZH2"
,
"Revised ZH2"
])
plt
.
title
(
'Box Plot of grades'
)
plt
.
ylabel
(
'Values'
)
plt
.
show
()
plt
.
boxplot
([
df
[(
df
[
rename_key
(
"overridden"
,
"ZH1-"
)]
==
"Yes"
)][
rename_key
(
"diff"
,
"ZH1-"
)],
df
[(
df
[
rename_key
(
"overridden"
,
"ZH2-"
)]
==
"Yes"
)][
rename_key
(
"diff"
,
"ZH2-"
)]],
labels
=
[
"Only difference ZH1"
,
"Only difference ZH2"
])
plt
.
title
(
'Box Plot of grades'
)
plt
.
ylabel
(
'Values'
)
plt
.
show
()
diff_by_graders_zh1
=
[
df
[(
df
[
rename_key
(
"grader"
,
"ZH1-"
)]
==
g
)][
rename_key
(
"diff"
,
"ZH1-"
)]
for
g
in
graders
.
keys
()]
diff_by_graders_zh2
=
[
df
[(
df
[
rename_key
(
"grader"
,
"ZH2-"
)]
==
g
)][
rename_key
(
"diff"
,
"ZH2-"
)]
for
g
in
graders
.
keys
()]
diff_by_graders_pzh1
=
[
df
[(
df
[
rename_key
(
"grader"
,
"PZH1-"
)]
==
g
)][
rename_key
(
"diff"
,
"PZH1-"
)]
for
g
in
graders
.
keys
()]
diff_by_graders_pzh2
=
[
df
[(
df
[
rename_key
(
"grader"
,
"PZH2-"
)]
==
g
)][
rename_key
(
"diff"
,
"PZH2-"
)]
for
g
in
graders
.
keys
()]
graders_anonym
=
[
chr
(
i
)
for
i
in
range
(
ord
(
'A'
),
ord
(
'A'
)
+
len
(
graders
))]
fig
,
ax1
=
plt
.
subplots
()
ax1
.
set_ylabel
(
"Corrected piece (bar)"
)
ax1
.
bar
(
range
(
1
,
len
(
graders_anonym
)
+
1
),
[
s
.
size
for
s
in
diff_by_graders_zh1
],
alpha
=
0.3
)
ax1
.
set_xlabel
(
"Grader"
)
color
=
'tab:red'
ax2
=
ax1
.
twinx
()
ax2
.
set_ylabel
(
"The points improved (boxplot)"
)
ax2
.
boxplot
(
diff_by_graders_zh1
,
labels
=
graders_anonym
)
fig
.
tight_layout
()
plt
.
savefig
(
"graders_ZH1.svg"
,
format
=
'svg'
,
dpi
=
300
)
plt
.
show
()
fig
,
ax1
=
plt
.
subplots
()
ax1
.
set_ylabel
(
"Corrected piece (bar)"
)
ax1
.
bar
(
range
(
1
,
len
(
graders_anonym
)
+
1
),
[
s
.
size
for
s
in
diff_by_graders_zh2
],
alpha
=
0.3
)
ax1
.
set_xlabel
(
"Grader"
)
color
=
'tab:red'
ax2
=
ax1
.
twinx
()
ax2
.
set_ylabel
(
"The points improved (boxplot)"
)
ax2
.
boxplot
(
diff_by_graders_zh2
,
labels
=
graders_anonym
)
fig
.
tight_layout
()
plt
.
savefig
(
"graders_ZH2.svg"
,
format
=
'svg'
,
dpi
=
300
)
plt
.
show
()
diff_summary
=
[
pd
.
concat
([
diff_by_graders_zh1
[
i
],
diff_by_graders_zh2
[
i
],
diff_by_graders_pzh1
[
i
],
diff_by_graders_pzh2
[
i
]])
for
i
in
range
(
0
,
len
(
diff_by_graders_zh1
))]
plt
.
boxplot
(
diff_summary
,
labels
=
graders_anonym
)
plt
.
title
(
'Box Plot of difference by graders'
)
plt
.
ylabel
(
'Values'
)
plt
.
show
()
diff_by_graders_zh1
=
[
df
[(
df
[
rename_key
(
"grader"
,
"ZH1-"
)]
==
g
)][
rename_key
(
"originalgrade"
,
"ZH1-"
)]
for
g
in
graders
.
keys
()]
diff_by_graders_zh2
=
[
df
[(
df
[
rename_key
(
"grader"
,
"ZH2-"
)]
==
g
)][
rename_key
(
"originalgrade"
,
"ZH2-"
)]
for
g
in
graders
.
keys
()]
diff_by_graders_pzh1
=
[
df
[(
df
[
rename_key
(
"grader"
,
"PZH1-"
)]
==
g
)][
rename_key
(
"originalgrade"
,
"PZH1-"
)]
for
g
in
graders
.
keys
()]
diff_by_graders_pzh2
=
[
df
[(
df
[
rename_key
(
"grader"
,
"PZH2-"
)]
==
g
)][
rename_key
(
"originalgrade"
,
"PZH2-"
)]
for
g
in
graders
.
keys
()]
graders_anonym
=
[
chr
(
i
)
for
i
in
range
(
ord
(
'A'
),
ord
(
'A'
)
+
len
(
graders
))]
plt
.
boxplot
(
diff_by_graders_zh1
,
labels
=
graders_anonym
)
plt
.
title
(
'Box Plot of teachers ZH1'
)
plt
.
ylabel
(
'Original grade'
)
plt
.
show
()
plt
.
boxplot
(
diff_by_graders_zh2
,
labels
=
graders_anonym
)
plt
.
title
(
'Box Plot of teachers ZH2'
)
plt
.
ylabel
(
'Original grade'
)
plt
.
show
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment