Harnessing Wasted Computing Power for
Scientific Computing

Séandor Guba, Maté éry, and Imre Szeberényi

Budapest University of Technology and Economics, Hungary,
{guba.sandor,orymate,szebi}@iit.bme.hu

Abstract. Nowadays more and more general purpose workstations in-
stalled in a student laboratory have built in multi-core CPU and graphics
card providing significant computing power. In most cases the utilization
of these resources is low, and limited to lecture hours. The concept of
utility computing plays an important role in nowadays technological de-
velopment. As part of utility computing, cloud computing offers greater
flexibility and responsiveness to ICT users at lower cost.

In this paper, we introduce a cloud management system which enables
the simultaneous use of both dedicated resources and opportunistic en-
vironment. All the free workstations (powered or not) are automatically
added to a resource pool, and can be used like ordinary cloud resources.
Researchers can launch various virtualized software appliances. Our so-
lution leverages the advantages of HT'Condor and OpenNebula systems.
Modern graphics processing units (GPUs) with many-core architectures
have emerged as general-purpose parallel computing platforms that can
dramatically accelerate scientific applications used for various simula-
tions. Our business model harnesses computing power of GPUs as well,
using the needed amount of unused machines. This makes the infrastruc-
ture flexible and power efficient.

Our pilot infrastructure consist of a high performance cluster and 28
workstations with dual-core CPUs and dedicated graphics cards. Alto-
gether we can use 10,752 CUDA cores through the network.

Keywords: Cloud, GPGPU, Grid, HTC, Utility computing

1 Introduction

In universities there is a huge demand for high performance computing, but
the smaller research groups can not afford buying a supercomputer or a large
compute cluster. However significant unused computing capacity has been con-
centrated at fingertips in the student laboratories. Most of our student labs has
quite new PCs with modern multi-core CPUs and high performance graphics
cards. The total computing performance of the laboratory resources could be
significant. The open questions are: a) how can we collect and use these re-
sources; b) what is the time limit of the usage; ¢) what happens if one or more
jobs are not finishing at the given time slot; d) what management software and



management rules needed to support the various software environment which
must be flexible and on demand.

In this paper we are answering to these questions and we introduce a solution
based on a new approach. We show that the cloud technology, based on hardware
accelerated virtualization, can be the right answer to these question. First of all
the management of the cloud based systems are easier and the they are more
flexible. According to the literature [mate-kvm-performance] and our experience
the modern virtualization has a minimal overhead to the native systems and has
more advantages than disadvantages.

Our basic idea is to run only a minimal host operating system on the bare
metal and virtualize everything else. In this manner we can easily solve the
questions raised up. We do not need time consuming cloning process for the
configuration management. We can save the ongoing scientific computing process
at any time, and we can restore and continue it even on other host machine. One
can say, yes, this goals are solved already by various cloud management systems
in corporate environment. What is the novum on this?

The main difference between the 7/24 hours cloud infrastructure and our lab-
oratory environment is that the 7/24 hours infrastructure used only for serving
the virtual machines. The functions of student laboratory are twofold: During
the scheduled lab exercises the workstations act as a cloud host and/or as a
simple cloud client, which serves only the virtual machines owned by the stu-
dent sitting in front of the workstation. However, the idle workstations acting as
a normal cloud host running computing intensive jobs like a condor executing
machine.

itt tartok One of
the main differences between corporate and educational use is the count of users
/ count of workstations ratio, i. e. in student laboratories a single workstation
is used by different persons each lesson.

Different hardware drivers, licensing and local storage limitations, or soft-
ware incompatibilities all make system administrators maintain lots of different
software environments. This process is both time-consuming and error-prone.
Virtualization eliminates these combinations and provides the possibility of del-
egating special software installation to the lecturer. [n*m helyett n+m felet kell
karbantartani] This introduces a way to rapid and frequent changes in the soft-
ware environment.

2 Virtualization

Most IaaS (infrastructure as a service) cloud systems are based on virtual ma-
chines. Although the technique has been available since the end of 1960’s, widespread
adoption of x86 based systems in the server segment made it almost entirely dis-
appear. Later some vendors started implementing different software based solu-
tions for virtualizing operating systems or even emulating CPUs. The renaissance
of virtualization began with manufacturers extending the x86 instruction set to



support low-overhead virtualization. This extension is known as Intel VT-x or
AMD-V.

Current popular techniques are operating system virtualization and full hard-
ware accelerated virtualization. The former typically takes shape in chroot en-
vironments and in namespacing of some kernel resources. This does not even
allow running different kernels, nor different kinds of operating systems. The
latest technique is full hardware accelerated virtualization, which is based on the
CPU support for isolating the concurrently running instances. This approach is
normally extended with paravirtualized device drivers, which eliminate the need
for emulating real world storage and network controllers.

Hardware accelerated virtualization requires CPU support, but this is only
missing currently on the low-end product line of the main x86 CPU manu-
facturers: some models of Intel Atom, Celeron, and Pentium. This hardware
acceleration provides a near-native performance in HPC applications.[x]

Currently there are more competing full virtualization solutions, the most
notable free ones are KVM and XEN. At the time of our decision, installing a
XEN hypervisor required modifications to the Linux kernel, and this was unac-
ceptable for us. This is no longer the case, but we are satisfied with KVM.

Also, we use all KVM functions through the libvirt library, which provides
an abstract interface for managing virtual machines. This has the benefit of
theoretically flawless migration to other hypervisors like XEN, ESXi, or Hyper-
V.

Physically accessible computers are normally used with directly attached
peripheries like display and keyboard. These devices are also emulated by KVM,
and you can access virtual machines’ consoles via the VNC protocol. This is
useful for installing the operating system or troubleshooting, but Windows and
Linux both provide better alternative for remote access.

We use remote desktop protocol for accessing Windows hosts, and secure
shell for text-based Linux machines. Remote graphical login to X11 servers has
always been available, but this is not reliable even on local network connections
because it is stateless. We use instead NoMachine NX.

3 Networking

Most virtual machines in a cloud must have a network connection for obvious
reasons. When designing complex networks, the general approach is decomposi-
tion by (OSI) layers. That is what we will follow here.

On the physical layer, our KVM hypervisor gives us a virtual network inter-
face controller, which is an emulated or paravirtualized NIC on the side of the
guest operating system, and a virtual NIC on the host side.

Emulated network controllers are a good choice only for unsupported oper-
ating systems, as the solution is based on emulating a widespread real world
network controller (i.e. the PCI signalling itself), and using a standard device
driver in the guest operating system. This has a very significant overhead, lim-
iting the available bandwidth to the 100Mbps order of magnitude even on the



most powerful systems. On the other hand, virtio—the paravirtualized network
interface of KVM—is able to transmit more Gbps without a significant CPU
usage (our test measurements showed virtio 30 times faster than an emulated
Realtek card).

Once we get a network connection between the host and the guest operating
system, we have to connect the VM to the outworld. The most common solution
to this is building a software based L2 (data link layer, Ethernet in this case)
bridge of the virtual NICs and the uplink interface on the host machine. This is
not a flexible solution, and provides poor management options like an unman-
ageable network switch does. Other option is using some trickery with ebtables,
a not too widely known or documented Linux kernel service for ethernet filtering.
It has some serious drawbacks, for example it can not use the same IP ranges
on different virtual networks.

Manageable network switches are standard in operating dynamically chang-
ing and secure network infrastructure. Fortunately there exists an increasingly
popular smart virtual switch implementation called Open vSwitch. It is a high
performance multi-layer virtual switch with VLAN, QoS and OpenFlow support,
merged into the mainline Linux kernel.

Our host systems are connected to manageable gigabit network switches’
VLAN tagged ports. This renders it possible to connect virtual machines to
isolated L2 networks on demand.

Firewall Head node

rest of the
network

Network switch

Worker k wmm multiple vians

Open vSwitch = public vm-net

[ ]
~ B E private vm-net
=l Pl oo e IS
= =

mm internet uplink

Fig. 1. The physical structure of the network.

Open VSwitch is also configured to control network traffic according to the
involved VM’s QoS settings. Also basic protection is achieved using access control
lists by prohibiting virtual machines egress traffic to use each other’s allocated
MAC or IP address.

Virtual networks are not very different from physical ones in the upper layers.
The most important condition is the frequency of changes. Our system in tradi-



tional physical networks viewpoint is like if someone would change the cabling
a hundred times in the middle of the day.

We have not found any friendly firewall and network gateway solution that
supports this, or only a single one of our requirements: changing the network
settings via remote procedure call, simultaneously changing the gateway, the
name server and the DHCP servers’ configuration, or supporting dynamically
changing virtual networks (VLANSs).

That is why we developed an integrated networking solution for all these
requirements. Our system consists of an iptables gateway, a tinydns name server
and an ISC DHCP server. All of these are configured through remote procedure
calls, and managed by a relational database backed object model. This network
management system also has a web interface, and can be used independently
without a cloud. We also use the same system managing our physical infrastruc-
ture i.e. office and laboratory networks, traditional servers, and telephony.

We have a limited set of public IPv4 addresses, which is somewhat less than
the number of currently running virtual machines. On the other hand, our IPv6
address space is more than enough for this.

Our solution is grouping the VMs to two main groups. The public vmm-net is
for machines which provide public services to more people, the private vm-net
is for those which are used only by a single or a small group of persons.

Public vin-net machines have public IPv4 and IPv6 addresses, and are pro-
tected with a simple port based input filter (which is user-configurable). On
the private vim-net, machines have private IPv4 and public IPv6 addresses. The
primary remote connection is reached by automatically configured IPv4 port
forward, or directly on the IPv6 address. As connecting to the standard port is a
more comfortable solution, users who load our web portal from IPv6 connection,
get a hostname with public AAAA and private A records. If the user has no
IPv6 connection, we display a common hostname with a single A record, and a
custom port number. As IPv6 is widely available in the central infrastructure of
our university, IPv6-capable clients are in majority. Users can open more ports,
which enable incoming connections, and set up IPv4 port forwarding.

As current implementations of DHCPv6 are not proper, we chose static con-
figuration on the virtual machines. The allocated IP addressesanswer are spec-
ified in the contextualization configuration, and we anyway have to configure
hostname, password, storage access, etc., so this was the simplest way. This
method has also some performance advantage. We also configure DHCP, which
is the preferred solution for non-virtualized workstations, or IP telephones.

4 Storage

For cloud system there is a need for a centralized storage system. It stores the
virtual machine images accessible by all host machine. Basically there is two
options for the

The images stored on a central storage server and shared on NFS (Network
File System). We store our images in QCOW (Qemu Copy on Write) format,



which enables separate base images and running instance differential images.
This architecture enables fast virtual machine deploy without the need to copy
full images on hosts.

CIRCLE Fileserver Our first problem was that it is hard to exchange data
with VM and if you delete the virtual machine all data will be lost. You can’t
connect USB drive and it is complicated to always install/use online storage
solution in every VM you are using. We build a micro storage solution for our
users. Virtual machines reach this server on local network via SSHFS or SMB
protocol. The contextualized base images automatically connect these remote
sources. Windows guest use SMB protocol and Linux/Unix guests use SSHFS.
This is a persistent store and can be used on any VM. To manage the data
outside virtual machines we build a webservice. It is bottle framework based
RESTful API solution. After authentication our users reach their files like any
other online storage solution. They can browse, download, upload, rename files
and make or delete directories. You can mount your storage via sshfs at home.
It’s easy to to under Linux and Windows as well. The store is protected by key
exchange authentcation. So to connect at home you need to upload your own
publickey (openssh format) and you are ready to mount your remote filesystem.

Our cloud consist of two different part. The cluster responsible for running
the critical services and virtual machines for students. Ant the lab computers
for the opportunistic computing.

5 Putting it together

The main goal was to give a self-service interface to our researchers, lecturers,
and students. Cloud management frameworks like OpenNebula and OpenStack
promise this, but after learning and deploying OpenNebula, we found even its
Self-Service portal’s abstraction level too low.

Our solution is a new cloud management system, code named CIRCLE
(Cloud Infrastructure for Research and Computing Labs in Education). CIR-
CLE provides an attractive web interface where users can do themselves all the
common tasks including launching and managing/controlling virtual machines,
creating templates based on other ones, and sharing templates with groups of
users.

This cloud management system is based on Django. This popular Python
framework gives us among other things a flexible object-relational mapping sys-
tem. However the Django framework is originally designed for web applications,
the business logic is not at all web specific. That’s why it is easy to provide
command line or remote procedure call interfaces to the model.

As the primary interface is web, which is in some aspect a soft real-time
system, the model can not use synchronous calls to external resources, neither
execute system commands. This is the reason why all remote procedure calls are
done asynchronously through a standard task queue. Our choice is the most pop-
ular such system integrated with Django: Celery distributed task queue. Celery is



Fig. 2. Technologies used for CIRCLE.

configured to use an implementation of AMQP protocol—called RabbitMQ—as
its message broker.

Celery workers set up the netfilter firewall, the domain name and DHCP
services, the IP blacklist, execute file server operations, and also communicate
with OpenNebula. This distributed solution makes it possible to dynamically
alter the subsystems.

In the opposite direction, some subsystems notify others of their state tran-
sitions through Celery. Based on this information further Celery tasks are sub-
mitted, and the models are updated and persisted.

CIRCLE models manage the full state space of the resources. Some of it is also
stored by the underlying OpenNebula, but most of this redundant information is
bound to its initial value as OpenNebula does not handle changes in most of the
meta information. This behavior arises of design decisions, and is not expected
being improved.

The thin slice of OpenNebula used by our system is continuously shrinking,
and we intend dropping OpenNebula in favor of direct bindings to libvirt and
the also considerably customized storage and network hooks.

6 Execution on workstations

The cloud system at our institute takes a big role in education and in general
R&D infrastructure, but there is a significant demand for high-throughput sci-
entific computing. This kind of requirement usually appears in form of many



long-running, independent jobs. On most parts of the world there is no fund to
build dedicated HPC clusters with enough resources for these jobs.

The highest load on the cloud takes place in the public hours and the
evenings, in more than half of the time we have much free resource, so it is
accomplishable running these jobs on low priority virtual machines in the cloud.
If interactive load is increasing, we can even suspend these machines, and resume
them later.

Running scientific batch jobs on student laboratory computers also have a
long history. Our idea is to run some of these jobs on virtual machines in the
computer laboratories overnight and in the weekends. We can suspend in the
morning all virtual machines to a memory image, and resume on the same or
some other hypervisor next evening. This solution makes it possible to run in-
dividual jobs virtually continuously through months or a year, without any spe-
cific investment. This result is important because of our observation that the
run length of similar jobs have a high standard deviation, and it also protects
against losing the partial result of months long computations in case of hardware
or power failure.

HTCondor has a similar result with its checkpoint support, but it needs
modifying the software for this need, which is often impossible for proprietary
products, or sometimes the user is not able to do this modification themself.

This solution uses mostly the same technologies as the dedicated cluster, but
there are some different requirements originating from the distributed nature of
a computer laboratory.

Computer laboratories have a 100Mbps Ethernet network, so using a read-
write remote file system would damage the performance.

We can use a disk-cached read-only remote file system (NFS4 or CernVM-
FS), and a local differential image (qcow2 or aufs). To be able to resume sus-
pended machines, we have to copy back the differential image and the memory
dump. Our choice for this is rsync.

This infrastructure can also be used without a notable modifications to run
the short-term virtual machines of the student,who sits in front of the given
workstation.

The lab network is exposed to unauthorized access, so we have to limit access
to confidential material. As a physically accessible general purpose workstation
does not currently have a way to reliably authenticate itself to a server, neither
to protect the stored data, we can not employ any solution against these at-
tacks other than security through obscurity and not using these systems for any
confidential executions.

Other important aspect is energy efficiency. We have successfully used HT-
Condor to automatically turn on and off the compute nodes of a HPC cluster.
This is also working with Wake on LAN and SSH on the workstations.



7 GPUs in the cloud

The most significant HPC performance in our student laboratories are the mid-
level GPUs in all the workstations used for teaching computer graphics. There
is a technology we used succesfully to use GPGPUs from the dedicated clusters’
virtual machines: PCI passthrough. However this technology requires both CPU
and motherboard support of IOMMU, which is a high-end feature nowadays.
The implementations are called Intel VT-d and AMD-Vi technologies, and they
appear in the server- and high-end workstation segments.

As none of our laboratory computers support IOMMU, we have to find a
different solution. The first one is using rCUDA, which is a small framework
making it possible to run host and device side of a CUDA program on different
hosts, communicating over TCP/IP or InfiniBand network. With this, we can
launch user-prepared virtual machines on each host, and run the device code via
local (virtio-based) network on the hypervisor. rCUDA is also capable to serve
more clients with a single device. This is useful if the host code uses the GPU
only part time.

The other option is using directly the host machine to execute GPGPU jobs.
This is a simpler approach, but necessarily involves a more complicated sched-
uler. Our choice for this type of problems is HT'Condor, which can manage this
scenario without much customization. The disadvantage is, that the user can’t
customize the host-side operating system.

Future

Summary ezen megy az oktatas a tavaszi felevben, statisztika, hany vim? user?

The main cloud system described in sections 2 to 5 are fully functional. The
extensions to support HTC on workstation however needs some more work at
the time of writing this paper. Our plans are to make it fully functional, and
release the whole system in an easily deployable and highly modular open source
package. We are planning to finish the current development phase until end of
August.

References

1. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for
Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315-333 (1982)

2. Clarke, F., Ekeland, I.: Solutions périodiques, du période donnée, des équations
hamiltoniennes. Note CRAS Paris 287, 1013-1015 (1978)

3. Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period
for nonautonomous Hamiltonian systems. J. Diff. Eq. 72, 28-55 (1988)

4. Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a ZZ, pseudoin-
dex theory. Annali di Matematica Pura (to appear)

5. Rabinowitz, P.: On subharmonic solutions of a Hamiltonian system. Comm. Pure
Appl. Math. 33, 609-633 (1980)



